

Nuclear Energy Data Needs

January 25, 2021

David Henderson

Program Manager, Advanced Modeling & Simulation DOE Office of Nuclear Energy

Office of Nuclear Energy – Mission Pillars

- Advance nuclear power to meet the nation's energy, environmental, and national security needs.
- Resolve technical, cost, safety, security and regulatory issues through research, development and demonstration.

Nuclear Beyond Electricity

Examples of Different Advanced Reactor Industry Designs

Gas Reactors

Framatome **SC-HTGR**

GE Hitachi PRISM

TerraPower TWR

Advanced Reactor Concepts LLC **ARC-100**

Molten Salt Reactors

USA IMSR

TerraPower MCFR

Elysium USA **MCSFR**

Kairos Power UCB PB-FHR

Nuclear Data Needs

- Driven by the anticipated materials and reactor flux spectrum comprising advanced nuclear reactor and fuels technologies
- Materials includes:
 - Coolants (e.g. FLiBe, molten chloride salts)
 - Moderators (e.g. graphite)
 - Control materials
 - Advanced fuels and clad (e.g. UN, SiC, etc.)

				Reactor	or Coolants				
		Water		Liquid Metal		Molten Salt		Gas	
	Spectrum →	Fast	Thermal	Fast	Thermal	Fast	Thermal	Fast	Thermal
Fuel Form	Ceramic								
	Metallic								
	Molten Salt								
	TRISO								

^{*}Chart not necessarily an exhaustive list

Nuclear Data Needs Priority

- Data needs priority should be driven by the <u>requirements</u> to accurately predict reactor behavior during steady-state and transient operation as well as postulated accident scenarios
 - Uncertainty quantification in the context of risk important to NRC licensing
 - Depends highly on the quality of covariance data for uncertainty propagation
- Priorities needs to be based on:
 - Identification of isotope data <u>of significance</u> as relates to the prediction of key parameters of interest
 - Parameters of interest include (to name a few):
 - Core reactivity
 - Decay heat
 - Power distribution
 - Feedback response due to material changes during anticipated and postulate transients
 - Source term for offsite dose
- For priority nuclear data, efforts need to generally focus on:
 - Missing data and "unphysical" artifacts in evaluations
 - Missing covariance data
 - Large covariance data

Thank you

